Expert Versus novice Human tutors

Abstract

Given that the mean effect size for human tutoring is much
less than the 2.0 standard deviations that inspired a whole
field, one might wonder if there is something wrong with
the human tutors in these studies. In particular, were they
expert tutors? The next section examines this question and
briefly reviews the literature on human tutoring expertise.
The following section focuses on studies that had especially
high effect sizes to discern why they were atypically success-
ful. The remaining sections discuss theoretical implications,
limitations, and recommendations for future work.

Expert Versus Novice Human Tutors

There is no accepted definition of an expert human tutor.
However, in many of the reviewed studies of human tutoring,
the authors characterized their tutors as experts, often based
on their years of experience.

The search within the constraints mentioned earlier (e.g.,
STEM content, etc.) uncovered several studies that compared
the effectiveness of novice and expert tutors (see Table A10 in
the Appendix) along with several studies that compared their
behaviors without measuring their relative effectiveness (e.g.,
Cromley & Azevedo, 2005; Glass, Kim, Evens, Michael, &
Rovick, 1999).2 Almost all these studies found that novice
tutors tended to lecture more, and expert tutors tended to be
much more interactive.

The reviewed studies contain little evidence that expert
tutors were more effective than novice tutors. Table A10 lists
the relevant expert—novice comparisons along with several
studies that manipulated the interactivity of the tutors. Al-
though some absolute differences in effectiveness were in the
expected direction, only two of these comparisons showed a
reliable difference in learning gains. Moreover, the Cohen et
al. (1982) meta-analysis found no relationship between tu-
tor’s experience and their effectiveness (given that they were
subject-matter experts). Clark et al. (1976) found that givi

subject-matter experts training and experience as tutors did
not make them more effective.

These findings are consistent with the interaction plateau
hypothesis. Although expert human tutors are more inter-
active than novice tutors, they are often no more effective
than novice tutors. Moreover, constraining human tutors to
be more or less interactive than they would normally be
does not have much impact on their effectiveness. Basically,
once tutoring has achieved a certain interactive granularity
(roughly, step-based tutoring), decreases in interaction gran-
ularity apparently provide diminishing and sometimes even
negligible returns.

Why Did Some Studies Have Such Large
Effect Sizes?

For 25 years, researchers have been seeking solutions for
Bloom’s (1984) “2 sigma problem.” Although one would
many of the studies of human tutoring to show

effect size, only two studies did. This section discusses th%%°
two studies, which now seem like outliers.

Bloom (1984) summarized six studies of human tutori &

(1983). All six studies had effect sizes close to 2.0. Of these
studies, only Anania’s Experiment 3 was included in this
review because only it involved one-on-one tutoring. The
other five experiments summarized by Bloom involved each
tutor working daily with a group of three students. However,
Anania’s one-on-one experiment did produce an effect size
of 1.95, so let us examine it more closely.

A common explanation for the effectiveness of tutors in
the studies discussed by Bloom is that they were highly
trained, expert tutors. However, the original sources for
Bloom’s review say that the tutors were “undergraduate ed-
ucation majors” (Anania, 1981, p. 58) who “met the experi-
menter each day for one week before the instruction began”
(Burke, 1983, p. 85) for training on both tutoring and the
task domain: probability. This suggests that the Bloom tutors
were not the “super tutors” that they have sometime been
thought to be.

Anania’s third experiment (and the other five Bloom ex-
periments as well) included a third condition, which was
mastery learning in the classroom. That is, after students had
finished classroom instruction on a unit, they took a mastery
test. If they scored 80%, then they were considered to have
mastered the unit and could go on to the next unit. Students
who scored less than 80% had to resume studying the unit
and repeat the mastery test. In all six experiments, the mas-
tery learning students scored about 1.0 standard deviations
higher on posttests than the ordinary classroom students.
Moreover, the tutoring conditions of all six experiments also
involved mastery learning. That is, the tutees took the same
mastery tests, restudied, and so on, but they worked with a
tutor instead of a classroom teacher. However, the mastery
threshold for the tutoring conditions was set at 90% instead of



80% for the classroom implementation of mastery learning
(Anania, 1981, pp. 44-45). That is, the tutors were holding
their students to a higher standard of mastery than the class-
room teachers. This alone could account for the advantage
of tutoring (2.0 effect size) over mastery learning (1.0 effect
size).

The second outlier study in the studies covered by this
review was one of the baroreceptor experiments of Evens
and Michael (2006, Table 10.3). The experiment found an
effect size of 1.95 comparing human tutors to students who
read the textbook instead. The number of subjects in this
study was small, so the researchers repeated the experiment
a few years later with more subjects and found an effect
size of 0.52 (Evens & Michael, 2006, Table 10.4). Although
the mean learning gains of the tutees were approximately
the same in both experiments, the first experiment’s control
group (N = 9) had a much lower mean gain (0.33) than the
mean gain (1.54) of the second experiment’s control group (N
=28). In another experiment (Evens & Michael, 2006, Table
18.11) where reading was compared to computer tutoring,
the same type of control group (N = 33) had a gain of 2.0.
Although there were minor differences in the assessments
across experiments, it appears that the mean learning gain of
the control condition from the first, low-powered experiment
may have been unusually low, perhaps due to a sampling
artifact.

At any rate, the 1.95 effect sizes of both the Anania study
and first Evens and Michael study were much higher than
any other study of human tutoring versus no tutoring. The
next highest effect size was 0.82. In short, it seems that
human tutoring is not usually 2 sigmas more effective than
classroom instruction, as the six studies presented by Bloom
(1984) invited us to believe. Instead, it is closer to the mean
effect size found here, 0.79. This is still a large effect size, of
course.

Although Bloom’s 2 sigma article now appears to be a
demonstration of the power of mastery learning rather than
human tutoring, it inspired a generation of research on human
and computer tutoring that has vastly increased our knowl-
edge and was well worth the effort. For instance, the re-
search generated many valuable corpora of transcribed and
analyzed tutorial dialogues that have shed many insights
into human tutoring. Bloom’s 2 sigma challenge inspired
a whole new technology, dialogue-based tutoring, that re-
quired advances in dialogue management and robust lan-
guage interpretation. These and other tutors now serve as
testbeds for conducting well-controlled experiments on mo-
tivation, interaction, collaboration, and many other issues
(see http://www.learnlab.org for examples).

Theoretical Implications

This section constructs an explanation for the observed inter-
action plateau. It starts by reconsidering the two hypotheses
that were deemed most plausible for explaining why human
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tutoring should be more effective than computer tutoring.
It might seem that the two hypotheses would have to con-
flict with the interaction plateau hypothesis, as they were
originally used to motivate the now-discredited interaction
granularity hypothesis. However, with only a few revised as-
sumptions, the two hypotheses lead to a simple explanation
of the plateau.

Hypothesis 7 was that the feedback of human tutoring
helps students detect and repair their knowledge. That is, hu-
man tutorial feedback facilitates self-repair. For instance, if
a student makes hundreds of mental inferences when solving
a problem, and an answer-based tutoring system says that
the answer is incorrect, then any of the hundred inferences
may be wrong. This makes it difficult for students to find the
incorrect inference and repair their knowledge. The answer-
based tutoring system cannot be particularly helpful, because
it too has little idea about which of the hundred inferences is
wrong. On the other hand, if a Auman tutor is eliciting rea-
soning from the student as she works, and the tutor indicates
that the student’s most recent utterance is wrong, then the
student knows that one of the most recent inferences is incor-
rect. There are only a few of them at most, so self-repair is
much easier. Thus, self-repair is much easier when the feed-
back refers to a few inferences (human tutoring) than when
it refers to many inferences (answer-based tutoring). This
was Hypothesis 7’s argument for the interaction granularity
hypothesis.

Now a step-based tutoring system gives feedback on in-
dividual steps, either immediately or when the steps are sub-
mitted. Either way, students can examine the first incorrect
step and know that one of the inferences that led to it must be
wrong. As long as the tutoring system ensures that there is
only a little reasoning required for each step, then compared
to answer-based tutoring, students should find it much easier
to find and fix the inference that caused a step to be flagged as
incorrect. Moreover, step-based tutoring systems usually give
hints that try to make it even easier for students to self-repair
their knowledge. Thus, facilitating self-repair provides one
explanation for the observed interaction plateau if we assume
that debugging the reasoning behind an incorrect step during
step-based tutoring is not much more difficult for students
than debugging the reasoning behind an incorrect utterance
to a human tutor.

Hypothesis 8 was that human tutoring scaffolds students,
where “scaffold” means pushing them a little further along
a line of reasoning via collaborative execution (e.g., prompt-
ing) and coordination (e.g., grounding; sharing knowledge).
For instance, when a human tutor says to the student, “Sounds
right to me. Keep going,” the tutor is indicating mutual un-
derstanding (coordination), accepting the student’s reasoning
(collaborative execution), and indicating who should con-
tinue the execution (collaborative execution). A step-based
tutoring system also scaffolds a student, but in different way.
Whenever students enter a step that the tutor marks as cor-
rect, the student knows that the tutor understood the step
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(coordination) and that the tutor agrees with the reasoning
(collaborative execution). When the student gets stuck, both
a human tutor and a step-based tutor will offer prompts and
hints to get the student moving again. If these fail to get the
student unstuck, then both human and step-based tutors do
some of the reasoning themselves (collaborative execution),
which is called the “bottom out” hint in the ITS literature.
Thus, when the student gets stuck, explicit collaborative ex-
ecution occurs with both human tutoring and step-base tu-
toring. Little of this scaffolding occurs with answer-based
tutoring systems.

Although scaffolding and encouragement of self-repair
probably have direct effects on learning, they may have an
equally strong indirect effect by making it more likely that
students finish problems correctly having done most of the
reasoning themselves. Human tutors almost always get stu-
dents to finish a problem correctly (Merrill et al., 1992).
Many ITS (i.e., both step-based and substep-based tutor-
ing systems) have such strong scaffolding and support for
self-repairs that students often complete problems correctly
(Schofield, 1995), and some ITS even require students to cor-
rectly solve the current problem before moving on to the next
(e.g., Koedinger, Anderson, Hadley, & Mark, 1997). On the
other hand, answer-based tutoring systems offer such weak
scaffolding and feedback that students are usually allowed to
give up after several failed attempts.

This factor (i.e., self-generating a solution vs. quitting)
should have a strong effect on learning. When students solve
a multistep problem correctly doing most of the reasoning
themselves, then they are applying hundreds of knowledge
components. Each time they apply a knowledge component,
they do so in a new context and thus generalize it. They
access it in memory and thus strengthen it. If they fail ini-
tially to retrieve an appropriate knowledge component, then
they usually construct or reconstruct it (recall that we are as-
suming a self-generated correct solution). Similarly, if they
apply a misconception, then they eventually realize their er-
ror and apply a correct knowledge component instead. In
short, when students self-generate a correct solution, they
generalize, strengthen, construct, and debug all the knowl-
edge components required by the solution. Unfortunately,
when they quit early, they miss hundreds of opportunities to
learn.

This explanation, that all self-generated correct solutions
are equally effective, was first proposed by Anderson et al.
(1995), albeit only for step-based tutoring systems. Ander-
son et al. hypothesized that as long as students solved a set
of problems doing most of the reasoning themselves, then
their learning gains would be the same regardless of what
kind of step-based tutoring they had. Anderson et al. sup-
ported this hypothesis by comparing several different ver-
sions of their tutoring systems. For instance, some tutoring
systems offered immediate feedback, whereas other offered
delayed feedback. In most of these experiments, when stu-
dents in all experimental groups were required to complete

all the problems correctly, the experimental manipulations
did not affect their learning gains. On the other hand, the
manipulations did affect efficiency, namely, the time to com-
plete all the problems correctly. Extending the Anderson
et al. (1995) hypothesis to all types of tutoring explains
the observed interaction plateau, given the assumptions
above.

In short, the explanation proposed here for the interaction
plateau is that human tutors, step-based tutors, and substep-
based tutors all provide enough scaffolding and feedback
to get students to self-generate correct solutions for most
problems. Even though step-based tutoring systems require
students to bridge larger gaps than the finer granularity tutor-
ing, students are apparently able to do so most of the time.
This has both direct and indirect benefits. The direct benefit
is that the scaffolding and feedback that gets them to bridge
gaps correctly also causes them to construct or self-repair
their knowledge. The indirect benefit is that, because stu-
dents keep working on a solution instead of giving up, they
encounter more learning opportunities. On the other hand,
when students solve problems with an answer-based tutor or
with no tutor, they often cannot bridge the long gap leading all
the way from the start to the finish of the solution even when
they get some feedback and perhaps even some scaffolding.
When they fail to bridge the gap, they miss opportunities to
learn.

This explanation is consistent with M. T. H. Chi’s (2009)
ICAP framework, which was discussed earlier as Hypothesis
9. According to the ICAP framework, interactive and con-
structive student behaviors can be equally effective, whereas
active and passive student behaviors are less effective. The
explanation proposed here is consistent with ICAP. The ex-
planation predicts that students working with a human tutor
would exhibit mostly interactive behavior and that students
working with a step-based tutor would exhibit mostly con-
structive behavior. On the other hand, students working with
an answer-based tutor or no tutor would often exhibit guess-
ing and quitting, which are active student behaviors at best.

Limitations and Recommendations

When it comes to making practical recommendations, the
conclusions presented here must be interpreted in the light
of the limitations of the review, some of which are due to
the inclusion/exclusion criteria. For instance, the researchers
in these studies all tried to control for content, whereas in
the real world, a tutor hired to help with physics may end
up coaching a student on math or reading. Moreover, these
studies only measured learning gains. Tutors may also boost
students’ motivation and efficiency.

Another limitation is that some of the comparisons in
the review have only a small number of experiments testing
them. More experiments are clearly needed. In particular,
direct comparisons of human tutoring with various types of
computer tutoring would be especially welcome. Although



thousands of students are covered in these studies, the number
of human tutors involved is considerably smaller, so gener-
alizing to all human tutors is risky.

It is important to note that none of the field studies in this
review completely replaced all classroom instruction with
tutoring. Instead, they replaced or partially replaced just one
activity (usually homework) with tutoring. A classroom has
many instructional activities that can have significant im-
pacts on learning gains, so upgrading just one activity does
not guarantee large overall course learning gains. On the
other hand, if much of the students’ learning goes on during
homework, then replacing paper-based homework with an
ITS can have a large effect size. For instance, in 4 year-long
evaluations, the learning gains of students who used a step-
based physics tutoring system were d = 0.61 higher than
the learning gains of students who did the same homework
assignments on paper (VanLehn et al., 2005).

Within the limitations of this article, one recommenda-
tion is that the usage of step-based tutoring systems should
be increased. Although such tutoring systems are not cheap
to develop and maintain, those costs do not depend on the
number of tutees. Thus, when a tutoring system is used by
a large number of students, its cost per hour of tutoring can
be much less than adult one-on-one human tutoring. One
implication of this review, again subject to its limitations, is
that step-based tutoring systems should be used (typically for
homework) in frequently offered or large enrollment STEM
courses.

Another implication of this review is that human tutors
have room for improvement. From the decades of studies
of human tutoring, a frequent observation, which is some-
times mentioned (e.g., M. T. H. Chi, 1996) but rarely given
the prominence it deserves, is that human tutors miss many
opportunities to help students learn. This is not surprising
given that they are mere humans doing a fast-paced, real-
time, complex task. Although humans can gradually improve
their performance on such tasks, it can take years of inten-
sive, deliberate, reflective practice, and moreover, frequent,
specific feedback on performance seems critical for improve-
ment (Ericsson & Lehmann, 1996). Although some profes-
sional tutors do practice tutoring for 10 or more years, their
practice is not like those of professional athletes, musicians,
chess players, surgeons, and others, because they probably
don’t get frequent, specific feedback on their successes and
failures, as do many other professionals (especially athletes).
For instance, it is likely that few tutors video record and
analyze their performances, looking for opportunities to im-
prove. Thus, one could argue that although the tutors in these
studies were called experts and have many years of tutor-
ing experience, they may not really be as expert as a human
could be given 10 years of constant feedback and reflective
practice.

Compared to improving human tutoring, it should be rel-
atively simple to improve the performance of ITS, that is,
step-based tutors and substep-based tutors. Recent studies
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have found many pedagogical mistakes and missed opportu-
nities in their performance as well (Baker, 2009; Baker, de
Carvalho, Raspat, Corbett, & Koedinger, 2009; Murray &
VanLehn, 2006). Merely finding and fixing the pedagogical
mistakes of existing ITS may produce a 2 sigma effect size.

Such analyses can be partially or even fully automated. For
instance, Min Chi and her colleagues found that a machine
learning technique (reinforcement learning) could be applied
to log data from a substep-based tutoring system in order to
adjust the parameters that controlled its pedagogical decision
making (M. Chi, VanLehn, Litman, & Jordan, 2011, in press).
The improved tutoring system was d = 0.84 more effective
than the original tutoring system. In short, we may soon
see self-improving tutoring systems that monitor their own
processes and outcomes in order to modify their tutoring
tactics and make them more effective.

In short, the bottom line is this: For ITS, although de-
creasing the granularity of the user interface does not seem
to provide additional benefit, reengineering the tutor—student
interactions may provide considerable additional benefit. For
human tutors, although merely interacting more frequently
with students does not scem to provide additional benefits,
years of deliberate practice may allow human tutors to im-
prove their effectiveness. It is worth remembering that no
classroom teacher has been replaced by an ITS, but class-
room instruction is often replaced by human tutoring, for
example, in home schooling. We need both good human tu-
tors and good ITS.

The field’s future work is clear. Tutoring researchers
should retain Bloom’s challenge and strive to develop both
computer and human tutors that are 2 standard deviations
more effective than no tutoring.

The Take-Home Points

For more than 20 years, researchers in tutoring have held a
mental image something like Figure 1: Effect sizes increase
monotonically as the interaction granularity of tutoring de-
creases and culminate in Bloom’s d = 2.0 for human tutoring.
As discussed earlier, Bloom’s d = 2.0 effect size seems to be
due mostly to holding the tutees to a higher standard of mas-
tery. That is, the tutees had to score 90% on a mastery exam
before being allowed to continue to the next unit, whereas
students in the mastery learning classroom condition had to
score 80% on the same exam, and students in the classroom
control took the exams but always went on to the next unit
regardless of their scores. So the Bloom (1984) article is, as
Bloom intended it to be, a demonstration of the power of mas-
tery learning rather than a demonstration of the effectiveness
of human tutoring.

If the familiar image of Figure 1 is no longer supported by
Bloom’s studies, then what is a more accurate image? Figure
6b presents the effect sizes reviewed here. It shows that effec-
tiveness increases from 0.31 (answer-based tutoring) to 0.76
(step-based tutoring), then seems to hit a plateau. Further
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decreases in user interface granularity (substep-based tutor-
ing; human tutoring) do not increase effectiveness. Although
more experimental data would be welcome, the interaction
plateau of Figure 6b appears to be the best image so far of
the relative effectiveness of different types of tutoring.

Perhaps most important, this progress report also shows
that ITS are, within the limitations of this article, just as ef-
fective as adult, one-on-one human tutoring for increasing
learning gains in STEM topics. Lest there be any misunder-
standing due to the unfortunate choice of “tutoring” as part
of the name of such systems, none of the studies reported
here even attempted to replace a classroom teacher with ITS
even though it is not uncommon for a human tutor to replace
a classroom teacher. As argued earlier, ITS should be used to
replace homework, seatwork, and perhaps other activities but
not to replace a whole classroom experience. Nonetheless,
within their limited area of expertise, currently available ITS
seem to be just as good as human tutors.
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